## 1.- ORION ITALIA SERIES MODBUS PROTOCOL.

The ORION ITALIA SERIES implement a subset of the AEG Modicon Modbus serial communication standard. Many devices support this protocol directly with suitable interface card, allowing direct connection of relays. The Modbus protocol is hardware-independent; that is, the physical layer can be any of variety of standard hardware configurations, this includes RS232, RS422, RS485, fibber optics, etc. The ORION ITALIA RELAYS include rear terminals that can be RS232 or RS485 ports. Modbus is a single master multiple slave protocol suitable for a multi-drop configuration as provided by RS485 hardware. In this configuration up to 32 slaves can be daisy-chained together on a single communication channel.

The SMPR-1 - ORION ITALIA Relay is always a Modbus slave. It cannot be programmed as a Modbus master. The Modbus protocol exists in two versions: Remote Terminal Unit (RTU, binary) and ASCII. Only the RTU version is supported by the Orion Italia Relay. Monitoring, programming and control functions are possible using read and write register commands.

## 2.- ELECTRICAL INTERFACE.

The hardware or electrical interface is any of the following:
a. Two two-wire RS485 for Com2 and Com3 rear terminals connector.
b. One RS232 for Com1 rear terminal connector.

In a two-wire RS485 link, data flow is bi-directional. RS232 port uses 3-pin Rx for receive data, Tx for Transmit data and signal ground. Different ports Com1, Com2 and Com3 can be used at the same time. Data flow is half duplex. That is, data is never transmitted and received at the same time.
In RS485 lines should be connected in a daisy chain configuration (avoid star connections) with terminating resistors and capacitors installed each end of the link, i.e. at the master end and the slave farthest from the master. That value of the terminating resistors should be equal to the characteristic impedance of the line. This is approximately 120 Ohms for standard 24 AWG twisted pair wire. The value of the capacitors should be 1 nF . Shielded wire should always be used to minimize noise. Polarity is important in RS485 communications. See figure below for more details.

## 3.- DATA FRAME FORMAT AND DATA RATE.

One data frame of an asynchronous transmission to or from a Orion Italia Relay consists of 1 start bit, 8 data bits, not parity and 1 stop bit (8N1). This produces a 10 bit frame. This is important for the correct transmission of the data.
The rear RS485 communication ports of the Orion Italia Relay supports operation at 1200,2400,4800, 9600 and 19200 baud.

## 4.- DATA PACKET FORMAT.

A complete request/response consists of the following bytes transmitted as separate data frames:

## Master Query Message:

SLAVE ADDRESS
(1 byte)
FUNCTION CODE
(1 byte)
DATA
(variable number of bytes depending on FUNCTION CODE)
CRC
(2 bytes)

## Slave Response Message:

SLAVE ADDRESS
(1 byte)
FUNCTION CODE
(1 byte)
DATA
(variable number of bytes depending on FUNCTION CODE)
CRC
(2 bytes)

A message is terminated when no data is received for a period of $31 / 2$ character transmission times. Consequently, the transmitting device must not allow gaps between bytes larger than this interval (about 3 ms at 9600 baud).

Slave Address: This is the first byte of every message. This byte represents the user-assigned address of the slave device that is to receive a message sent by the master. Each slave device must be assigned a unique address, and only the addressed slave will respond to a message that starts with its address. In a master query message the SLAVE ADDRESS represents the address of the slave to which the request is being sent. In a slave response message the SLAVE ADDRESS is a confirmation representing the address of the slave that is sending the response. A master query message with a SLAVE ADDRESS of 0 indicates a broadcast command. All slaves on the communication link will take action based on the message, but no one will respond to the master.

Function Code: This is the second byte of every message. Modbus defines function codes of 1 to 127. The Orion Italia Relay implements some of this functions. See section 7 for details of the function codes supported by the Orion Italia Relay Series Modbus Protocol. In a master query message the FUNCTIONS CODE tells the slave what action to perform. In a slave response message, if the FUNCTION CODE sent from the slave is the same as the FUNCTION CODE sent from the master then the slave performed the function as requested.

Data: This will be a variable number of bytes on the FUNCTION CODE. This may include actual values, setpoints or addresses sent by the master to the slave or by the slave to the master. See section 7 for a description of the Orion-supported functions and the data required for each.

CRC: This is a two byte error checking code. CRC is sent LSByte first followed by the MSByte. The RTU version of Modbus includes a two byte CRC-16 (16 bit cyclic redundancy check) with every message. The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (11000000000000101B). The 16 bit remainder of the division is appended to the end of the message, MSByte first. The resulting message including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred. If a Orion Modbus slave device receives a message in which an error is indicated by the CRC-16 calculation, the slave device will not respond to the message. A CRC-16 error indicates that one or more bytes of the message were received incorrectly and thus the entire message should be ignored in order to avoid the slave device performing any incorrect operation. The CRC-16 calculation is an industry standard method used for error detection. An algorithm is included in section 5 CRC-16 algorithm to assist programmers in situations where no standard CRC-16 calculation routines are available.

## 5.- CRC-16 ALGORITHM

Once the following algorithm is completed, the working register " A " will contain the CRC value to be transmitted. Note that this algorithm requires the characteristic polynomial to be reverse bit ordered. The most significant bit of the characteristic polynomial is dropped, since it does not affect the value of the remainder. The following symbols are used in the algorithm:

Symbols:

| --> | data transfer |
| :---: | :---: |
| A | 16 bit working register |
| Alow | low order byte of $A$ |
| Ahigh | high order byte of $A$ |
| CRC | 16 bit CRC-16 value |
| i, ${ }^{\text {j }}$ | loop counter |
| (+) | logical EXCLUSIVE-OR operator |
| N | total number of data bytes |
| Di | i-th data byte ( $\mathrm{i}=0$ to $\mathrm{N}-1$ ) |
| G | 16 bit characteristic polynomial $=1010000000000001$ (binary) with MSbit dropped and bit order reversed |
| shr $(\mathbf{x})$ | right shit operator (the LSbit of $x$ is shifted into a carry lag, a '0' is shifted into the MSbit of $x$, all other bits are shifted right one location) |

## Algorithm:

1. FFFF(hex) --> A
2. $\mathrm{O}-->\mathrm{i}$
3. O --> j
4. Di (+) Alow --> Alow
5. $\mathrm{j}+1$--> j
6. $\operatorname{shr}(A)$
7. Is there a carry ?

No: go to step 8
Yes: G (+) A --> A and continue
8. Is $\mathrm{j}=8$ ?

No: go to 5
Yes: continue
9. $\quad i+1-->i$
10. Is $\mathrm{i}=\mathrm{N}$ ?

No: go to 3
Yes: continue
11. A ---> CRC

## 6.- MESSAGE TIMING

Communication message synchronization is maintained by timing constraints. The receiving device must measure the time between the reception of characters. If three and one half character times elapse without a new character or completion of the message, then the communication link must be reset (i.e. all slaves start listening for a new query message from the master). Thus at 1200 baud a delay of greater than $3.5 \times 1 / 1200 \times 10=29.2 \mathrm{~ms}$ cause the communication link to be reset. At 9600 baud a delay of greater than $3.5 \times 1 / 9600 \times 10=3.6 \mathrm{~ms}$ will cause the communication link to be reset. Most master query messages will be responded to in less than 50 ms . The maximum time for the Orion Italia Relays to return a slave response message for any function code will never exceed 1 second.

## 7.- SUPPORTED FUNTION CODES

The second byte of every message is the function code. Modbus defines function codes of 01 h to 7 Fh . The Orion Italia Relay Modbus protocol supports some of these functions, as summarized in Table No. 1

TABLE No. 1

| FUNCTION CODE | FUNCTION CODE |  |
| :--- | :--- | :--- |
| MODBUS PROT. | ORION ITALIA <br> $($ HEX $)$ |  |
| (HEX) | 03 | DEFINITION |
| 03 | 04 | READ SETPOINTS or ACTUAL VALUES |
| 04 | 05 | READ SETPOINTS or ACTUAL VALUES |
| 05 | 06 | EXECUTE OPERATION |
| 06 | 10 | STORE SINGLE SETPOINTS |
| 10 |  | STORE MULTIPLES SETPOINTS |

Since some programmable logic controllers only support function codes 03h (or 04h) and 10h, most of the above Modbus commands can be performed by reading from or writing to special addresses in the Orion Italia Relay memory map using these function codes.

## 7.1.- FUNCTION CODE 03H or 04H - READ SETPOINTS OR ACTUAL VALUES.

Modbus implementation: Read Holding Registers
Orion Italia Relay implementation: Read Actual Values or Setpoint

The Orion Italia Relay implementation of Modbus views "holding registers" as any setpoint or actual values register in the Orion Italia Relay memory map. Registers are 16 (two byte) values transmitted high order byte first. Thus all Orion Italia Relay setpoints and actual values in the memory map are sent as two byte registers. This function code allows the master to read one or more consecutive setpoints or actual values from addressed slave device.

The slave response to these function codes is the slave address, function code, a count of the number of data bytes to follow, the data itself and the CRC. Each data item is sent as a two byte number with the high order byte sent first. The CRC is sent as a two byte number with the low order byte sent first.

## MESSAGE FORMAT EXAMPLE:

Request to read 4 register values starting address 0102h from slave device 1.

| Master query message | Example(hex) |  |
| :--- | :--- | :--- |
| SLAVE ADDRESS | 01 | query message for slave 01 = 01h |
| FUNCTION CODE | 03 | read Setpoints |
| DATA STARTING ADDRESS-high order | 01 | data starting at address 0102h |
| DATA STARTING ADDRESS-low order byte | 02 |  |
| NUMBER OF REGISTERS-high order byte | 00 | 4 register value = 4 word total |
| NUMBER OF REGISTER-low order byte | 04 |  |
| CRC-low order byte | E4 | CRC calculated by the master |
| CRC-high order byte | 35 |  |

If the function code or the address of any of the requested data is illegal, the slave will not respond the message. Otherwise, the slave will respond as follows:

Slave response message
SLAVE ADDRESS
FUNCTION CODE
BYTE COUNT
DATA \#1-high order byte
DATA \#1-low order byte
DATA \#2-high order byte
DATA \#2-low order byte
DATA \#3-high order byte
DATA \#3-low order byte
DATA \#4-high order byte
DATA \#4-low order byte
CRC-low order byte
CRC-high order byte

Example (hex)
01 response message from slave $1=01 \mathrm{~h}$
03 read Setpoints
084 register values = 8 bytes total 00 register value in address 0102= 0064h64

00 register value in address 0103=0064h6403E800644042
register value in address 0104=03E8h
register value in address 0105=0064h
CRC calculated by the slave

## 7.2.- FUNCTION CODE 05H - EXECUTE OPERATION

Modbus implementation: Force Single Coil<br>Orion Italia Relay implementation: Execute Operation

This function code allows the master to request a SMPR-1 to perform specific command operation. The commands Number Listed in the table 2: Commands; correspond to operations codes for function code 05h.
The Slave Response to this function is to echo the entire master transmission.
See Format F23 for Command Operations Codes

## MESSAGE FORMAT EXAMPLE:

Request to Remote Reset SMPR-1 Relay.

| Master query message | Example(hex) |  |
| :--- | :--- | :--- |
| SLAVE ADDRESS | 01 | Query message for slave $01=01 \mathrm{~h}$ |
| FUNCTION CODE | 05 | Execute Operation |
| OPERATION CODE-high order | 00 | Reset Relay Command |
| OPERATION CODE-low order byte | 01 |  |
| NUMBER OF REGISTERS-high order byte | FF | Perform Function |
| NUMBER OF REGISTER-low order byte | 00 |  |
| CRC-low order byte | DD $\quad$ CRC calculated by the master |  |
| CRC-high order byte | FA |  |
|  |  |  |
| Slave response message | Example (hex) |  |
| SLAVE ADDRESS | 01 | Message from slave 01 = 01h |
| FUNCTION CODE | 05 | Execute Operation |
| DATA STARTING ADDRESS-high order | 00 | Reset Relay Command |
| DATA STARTING ADDRESS-low order byte | 01 |  |
| NUMBER OF REGISTERS-high order byte | FF | Perform Function |
| NUMBER OF REGISTER-low order byte | 00 |  |
| CRC-low order byte | DD | CRC calculated by theSlave |
| CRC-high order byte | FA |  |

## 7.3.- FUNCTION CODE 06H - STORE SINGLE SETPOINTS

Modbus implementation: Preset Single Register
Orion Italia Relay implementation : Store Single Setpoints

This function code allows the master to store single setpoints into the memory map of the SMPR-1.
The Slave Response to this function is to echo the entire master transmission.

## MESSAGE FORMAT EXAMPLE:

Request slave device 01h to write the value 0190h at setpoint address 0102 h

| Master query message | Example(hex) |  |
| :--- | :--- | :--- |
| SLAVE ADDRESS | 01 | query message for slave 01 $=01 \mathrm{~h}$ |
| FUNCTION CODE | 06 | Store Single Setpoints |
| DATA STARTING ADDRESS-high order | 01 | Setpoint Address 0102h |
| DATA STARTING ADDRESS-low order byte | 02 |  |
| NUMBER OF REGISTERS-high order byte | 01 | Data for Address 0102h $=0190 \mathrm{~h}$ |
| NUMBER OF REGISTER-low order byte | 90 |  |
| CRC-low order byte | 28 | CRC calculated by the master |
| CRC-high order byte | $0 A$ |  |


| Slave response message | Example (hex) |  |
| :--- | :--- | :--- |
| SLAVE ADDRESS | 01 | Message from slave 01 $=01 \mathrm{~h}$ |
| FUNCTION CODE | 06 | Store Single Setpoints |
| DATA STARTING ADDRESS-high order | 01 | Setpoint Address 0102h |
| DATA STARTING ADDRESS-low order byte | 02 |  |
| NUMBER OF REGISTERS-high order byte | 01 | Data Stored in Address 0102h $=0190 \mathrm{~h}$ |
| NUMBER OF REGISTER-low order byte | 90 |  |
| CRC-low order byte | 28 | CRC calculated by the Slave |
| CRC-high order byte | 0 A |  |

## 7.4.- FUNCTION CODE 10H -STORE MULTIPLE SETPOINTS

Modbus implementation: Preset Multiple Register
Orion Italia Relay implementation : Store Multiple Setpoints

This function code allows the master to modify the contest of a one or more consecutive setpoint in the addressed slave device. Setpoint registers are 16 bit (two byte) values transmitted high order byte first. The SMPR-1 Setpoint data starts at address 0100h.

To store the value of one or more setpoints in the internal memory of the SMPR-1, the following steps shall be realized:
a) First shall be read setpoint group to modify with function 03h or 04h.
b) Then, modify the values of setpoints according to memory map.
c) Send setpoint group back to relay with function 10 h .

The SMPR-1 response to this function code is to echo the slave address, function code, starting address, the number of setpoints stored, and the CRC.

MESSAGE FORMAT AND EXAMPLE:

Request slave device 11 h to write the value 0190h at setpoint address 0102h, and the value 012Ch at setpoint address 0103h.

Master query message
SLAVE ADDRESS
FUNCTION CODE
DATA STARTING ADDRESS-high order byte
DATA STARTING ADDRESS-low order byte
NUMBER OF SETPOINTS-high order byte
NUMBER OF SETPOINTS-low order byte
BYTE COUNT
DATA \#1-high order byte
DATA \#1-low order byte
DATA \#2-high order byte
DATA \#2-low order byte
CRC-low order byte
CRC-high order byte

Example (hex)
11 query for slave 11 h
10 store multiple setpoint values
01 data starting at address 0102
02
002 setpoint values $=2$ word
02
044 byte of data
01 data for address 0102h=012Ch
2C
01 data for address $0103 \mathrm{~h}=012 \mathrm{Ch}$
2C
9E CRC calculated by the master

If the function code or the address or value of any of the data, is illegal, the slave will not respond to the message. Otherwise, the slave will respond as follows:

| Master query message | Example (hex) |
| :--- | :--- |
| SLAVE ADDRESS | 11 Message from slave 11 h |
| FUNCTION CODE | 10 store multiple setpoint values |
| DATA STARTING ADDRESS-high order byte | 01 data starting at address 0102 h |
| DATA STARTING ADDRESS-low order byte | 02 |
| NUMBER OF SETPOINTS-high order byte | 002 setpoint values $=2$ word |
| NUMBER OF SETPOINTS-low order byte | 02 |
| CRC-low order byte | E1 CRC calculated by the slave |
| CRC-high order byte | 5 E |

## 8.- MEMORY MAP INFORMATION

The data stored in the SMPR-1 is grouped generally on Setpoints, Actual Values and Product ID. Setpoints can be read and written by a master computer. Actual Values \& Product ID are read only. All data is stored as two bytes values (16 bit Word). Addresses are listed in hexadecimal. Data values (Setpoint ranges, increments, factory value) are in decimal.
See Memory Map below.

| SMPR-1 - MODBUS MEMORY MAP |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Add (Hex) | MODBUS REG. ADD (Dec) | Size | Description | Unit | Range | Step | Initial Value | Format | Read/ Write |
| Product ID |  |  |  |  |  |  |  |  |  |
| 0000 | 300001 | 1 W | Product Code | --- | --- | --- | 22 | F2 | R |
| 0001 | 300002 | 1W | Product Model | --- | --- | --- | 1 | F2 | R |
| 0002 | 300003 | 1 W | Version Number | --- | --- | --- | 1.02 | F6 | R |
| 0003 | 300004 | 1 W | Product Language | --- | --- | --- | 1 | F24 | R |


| Commands |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0080 | 400129 | 1 W | --- | --- | --- | --- | F23 | R/W |
| TimeSet |  |  |  |  |  |  |  |  |
| 0090 | 400145 | 3 W Date \& Time Preset Data | --- | --- | --- | --- | F8 | R/W |


| Common Setpoints |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0100 | 400257 | 1 W | Access Code | --- | 111~999 | 1 | 111 | F10 | R/W |
| 0101 | 400258 | 1 W | System Setup | BitField | --- | --- |  | F9 | R/W |
| 0102 | 400259 | 1 W | Phase CT Rating Primary | A | 5~5000 | 5 | 100 | F2 | R/W |
| 0103 | 400260 | 1 W | Ground CT Rating Primary | A | 5~5000 | 5 | 100 | F2 | R/W |
| 0104 | 400261 | 1 W | VT Nominal Secondary | V | 55~254 | 1 | 100 | F2 | R/W |
| 0105 | 400262 | 1 W | VT Primary Volts | KV | 0.10~69.00 | 0.01/0.1 | 10.00 | F6 | R/W |
| 0106 | 400263 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0107 | 400264 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0108 | 400265 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0109 | 400266 | 1 W | Amps Demand Period | min. | 5~60 | 1 | 15 | F2 | R/W |
| 010A | 400267 | 1 W | Power Demand Period | min. | 5~60 | 1 | 15 | F2 | R/W |
| 010B | 400268 | 1 W | Reserved |  |  |  |  |  | R/W |
| 010C | 400269 | 1 W | Reserved |  |  |  |  |  | R/W |
| 010D | 400270 | 1 W | Output Relays Config | BitField | --- | --- | 0 | F11 | R/W |
| 010E | 400271 | 1 W | TRIP Relay Pulse Time | ms | 100~2000 | 100 | 200 | F2 | R/W |
| 010F | 400272 | 1 W | AUX1 Relay Pulse Time | ms | 100~2000 | 100 | 200 | F2 | R/W |
| 0110 | 400273 | 1 W | AUX2 Relay Pulse Time | ms | 100~2000 | 100 | 200 | F2 | R/W |
| 0111 | 400274 | 1 W | AUX3 Relay Pulse Time | ms | 100~2000 | 100 | 200 | F2 | R/W |
| 0112 | 400275 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0113 | 400276 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0114 | 400277 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0115 | 400278 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0116 | 400279 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0117 | 400280 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0118 | 400281 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0119 | 400282 | 1 W | Reserved |  |  |  |  |  | R/W |
| 011A | 400283 | 1 W | Block Trip Delay | Sec | 0.05~1.00 | 0.01 | 0.15 | F6 | R/W |
| 011B | 400284 | 1 W | Opening Breaker Time | ms | 10~500 | 10 | 100 | F2 | R/W |
| 011C | 400285 | 1 W | Reserved |  |  |  |  |  | R/W |
| 011D | 400286 | 1 W | Reserved |  |  |  |  |  | R/W |
| 011E | 400287 | 1 W | Reserved |  |  |  |  |  | R/W |
| 011F | 400288 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0120 | 400289 | 1 W | Digital Inputs Config | BitField | --- | --- | 0 | F12 | R/W |
| 0121 | 400290 | 1 W | Input 1 Function |  | 0~9 | 1 | 0 | F13 | R/W |
| 0122 | 400291 | 1 W | Input 2 Function |  | 0~9 | 1 | 2 | F13 | R/W |
| 0123 | 400292 | 1 W | Input 3 Function |  | 0~9 | 1 | 1 | F13 | R/W |
| 0124 | 400293 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0125 | 400294 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0126 | 400295 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0127 | 400296 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0128 | 400297 | 1 W | Reserved |  |  |  |  |  | R/W |
| 0129 | 400298 | 1 W | Reserved |  |  |  |  |  | R/W |
| 012A | 400299 | 1 W | Event Recorder Config | BitField | --- | --- |  | F14 | R/W |
| 012B | 400300 | 1 W | Breaker Driscrepancy Relays | --- | 0~14 | 2 | 0 | F15 | R/W |
| 012C | 400301 | 1 W | Breaker Driscrepancy Delay | ms | 10~2500 | 10 | 1000 | F2 | R/W |
| 012D | 400302 | 1 W | Mechanical Operations Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 012E | 400303 | 1 W | Mechanical Operations Maximum | --- | 5~9995 | 5 | 3000 | F2 | R/W |
| 012F | 400304 | 1 W | Accumulated Amp Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 0130 | 400305 | 1 W | Accumulated Amp Level | KA | 10~5000 | 1 | 300 | F2 | R/W |
| 0131 | 400306 | 1 W | Slave Address | --- | 1~247 | 1 | 1 | F2 | R/W |
| 0132 | 400307 | 1 W | Com1 (RS-232) Baud Rate | Baud | $0 \sim 4$ | 1 | 3 | F17 | R/W |
| 0133 | 400308 | 1 W | Com2 (RS-485) Baud Rate | Baud | $0 \sim 4$ | 1 | 3 | F17 | R/W |
| 0134 | 400309 | 1 W | Com3 (RS-485) Baud Rate | Baud | 0~4 | 1 | 3 | F17 | R/W |


| Actual Values |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0200 | 300513 | 3 W | DMP Relay Date \& Time | --- | --- | --- | --- | F8 | R |
| 0203 | 300516 | 1 W | Front Panel Leds Status | BitField | --- | --- | --- | F18 | R |
| 0204 | 300517 | 1 W | Front Panel Leds Blink Status | BitField | --- | --- | --- | F18 | R |
| 0205 | 300518 | 1 W | Output Relays Status | BitField | --- | --- | --- | F20 | R |
| 0206 | 300519 | 1 W | Digital Inputs Status | BitField | --- | --- | --- | F21 | R |
| 0207 | 300520 | 1 W | Status Flags 1 | BitField | --- | --- | --- | F25 | R |
| 0208 | 300521 | 1 W | Status Flags 2 | BitField | --- | --- | --- | F26 | R |
| 0209 | 300522 | 1 W | Status Flags 3 | BitField | --- | --- | --- | F27 | R |
| 020A | 300523 | 1 W | Pickup Flags 1 | BitField | --- | --- | --- | F25 | R |
| 020B | 300524 | 1 W | Pickup Flags 2 | BitField | --- | --- | --- | F26 | R |
| 020C | 300525 | 1 W | Pickup Flags 3 | BitField | --- | --- | --- | F27 | R |
| 020D | 300526 | 2 W | Phase A RMS Current | A | --- | --- | --- | F6 | R |
| 020F | 300528 | 2 W | Phase B RMS Current | A | --- | --- | --- | F6 | R |
| 0211 | 300530 | 2 W | Phase C RMS Current | A | --- | --- | --- | F6 | R |
| 0213 | 300532 | 2 W | Ground RMS Current | A | --- | --- | --- | F6 | R |
| 0215 | 300534 | 2 W | Negative Sequence Current | A | --- | --- | --- | F6 | R |
| 0217 | 300536 | 2 W | Phase AB RMS Voltage | V | --- | --- | --- | F4 | R |
| 0219 | 300538 | 2 W | Phase BC RMS Voltage | V | --- | --- | --- | F4 | R |
| 021B | 300540 | 2 W | Phase CA RMS Voltage | V | --- | --- | --- | F4 | R |
| 021D | 300542 | 2 W | Phase AN RMS Voltage | V | --- | --- | --- | F4 | R |
| 021F | 300544 | 2 W | Phase BN RMS Voltage | V | --- | --- | --- | F4 | R |
| 0221 | 300546 | 2 W | Phase CN RMS Voltage | V | --- | --- | --- | F4 | R |
| 0223 | 300548 | 2 W | Current Average | A | --- | --- | --- | F6 | R |
| 0225 | 300550 | 2 W | Voltage Average | V | --- | --- | --- | F4 | R |
| 0227 | 300552 | 2 W | Reserved |  |  |  |  |  | R |
| 0229 | 300554 | 2 W | Reserved |  |  |  |  |  | R |
| 022B | 300556 | 2 W | Reserved |  |  |  |  |  | R |
| 022D | 300558 | 2 W | Reserved |  |  |  |  |  | R |

SMPR-1 Relay - Software Versions (1.02)

| SMPR-1 - MODBUS MEMORY MAP |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Add (Hex) | MODBUS REG. ADD (Dec) | Size | Description | Unit | Range | Step | Initial Value | Format | $\begin{gathered} \text { Read/ } \\ \text { Write } \end{gathered}$ |
| 022F | 300560 | 2 W | $3 \varnothing$ Real Power | KW | --- | --- | --- | F5 | R |
| 0231 | 300562 | 2 W | $3 \varnothing$ Reactive Power | KVAR | --- | --- | --- | F5 | R |
| 0233 | 300564 | 2 W | $3 \varnothing$ Aparent Power | KVA | --- | --- | --- | F5 | R |
| 0235 | 300566 | 2 W | Real Power Phase A | KW | --- | --- | --- | F5 | R |
| 0237 | 300568 | 2 W | Real Power Phase B | KW | --- | --- | --- | F5 | R |
| 0239 | 300570 | 2 W | Real Power Phase C | KW | --- | --- | --- | F5 | R |
| 023B | 300572 | 2 W | Reactive Power Phase A | KVAR | --- | --- | --- | F5 | R |
| 023D | 300574 | 2 W | Reactive Power Phase B | KVAR | --- | --- | --- | F5 | R |
| 023F | 300576 | 2 W | Reactive Power Phase C | KVAR | --- | --- | --- | F5 | R |
| 0241 | 300578 | 2 W | Aparent Power Phase A | KVA | --- | --- | --- | F6 | R |
| 0243 | 300580 | 2 W | Aparent Power Phase B | KVA | --- | --- | --- | F6 | R |
| 0245 | 300582 | 2 W | Aparent Power Phase C | KVA | --- | --- | --- | F6 | R |
| 0247 | 300584 | 1 W | $3 \varnothing$ Power Factor | --- | --- | --- | --- | F19 | R |
| 0248 | 300585 | 1 W | Reserved |  |  |  |  |  | R |
| 0249 | 300586 | 1 W | Reserved |  |  |  |  |  | R |
| 024A | 300587 | 1 W | Reserved |  |  |  |  |  | R |
| 024B | 300588 | 1 W | Frequency | Hz | --- | --- | --- | F6 | R |
| 024C | 300589 | 1 W | Reserved |  |  |  |  |  | R |
| 024D | 300590 | 1 W | Reserved |  |  |  |  |  | R |
| 024E | 300591 | 1 W | Reserved |  |  |  |  |  | R |
| 024F | 300592 | 1 W | Reserved |  |  |  |  |  | R |
| 0250 | 300593 | 1 W | Phase A Current Unbalance | \% | --- | --- | --- | F4 | R |
| 0251 | 300594 | 1 W | Phase B Current Unbalance | \% | --- | --- | --- | F4 | R |
| 0252 | 300595 | 1 W | Phase C Current Unbalance | \% | --- | --- | --- | F4 | R |
| 0253 | 300596 | 1 W | Reserved |  |  |  |  |  | R |
| 0254 | 300597 | 1 W | Reserved |  |  |  |  |  | R |
| 0255 | 300598 | 1 W | Reserved |  |  |  |  |  | R |
| 0256 | 300599 | 1 W | Reserved |  |  |  |  |  | R |
| 0257 | 300600 | 1 W | Reserved |  |  |  |  |  | R |
| 0258 | 300601 | 1 W | Reserved |  |  |  |  |  | R |
| 0259 | 300602 | 1 W | Reserved |  |  |  |  |  | R |
| 025A | 300603 | 1 W | Reserved |  |  |  |  |  | R |
| 025B | 300604 | 1 W | Reserved |  |  |  |  |  | R |
| 025C | 300605 | 1 W | Reserved |  |  |  |  |  | R |
| 025D | 300606 | 1 W | Reserved |  |  |  |  |  | R |
| 025E | 300607 | 1 W | Phase Sequence | --- | --- | --- | --- | F32 | R |
| 025F | 300608 | 2 W | Positive Active Energy | KWh | --- | --- | --- | F2 | R |
| 0261 | 300610 | 2 W | Negative Active Energy | KWh | --- | --- | --- | F2 | R |
| 0263 | 300612 | 2 W | Positive Reactive Energy | KVARh | --- | --- | --- | F2 | R |
| 0265 | 300614 | 2 W | Negative Reactive Energy | KVARh | --- | --- | --- | F2 | R |
| 0267 | 300616 | 3 W | Last Energy Reset Date \& Time | --- | --- | --- | --- | F8 | R |
| 026A | 300619 | 2 W | Last Current Demand | A | --- | --- | --- | F6 | R |
| 026C | 300621 | 2 W | Last Real Power Demand | KW | --- | --- | --- | F5 | R |
| 026E | 300623 | 2 W | Last Reactive Power Demand | KVAR | --- | --- | --- | F5 | R |
| 0270 | 300625 | 2 W | Max Current Demand | A | --- | --- | --- | F6 | R |
| 0272 | 300627 | 3 W | Max Current Demand Date \& Time | --- | --- | --- | --- | F8 | R |
| 0275 | 300630 | 2 W | Max Real Power Demand | KW | --- | --- | --- | F5 | R |
| 0277 | 300632 | 3 W | Max Real Power Date \& Time | --- | --- | --- | --- | F8 | R |
| 027A | 300635 | 2 W | Max Reactive Power Demand | KVAR | --- | --- | --- | F5 | R |
| 027C | 300637 | 3 W | Max Reactive Power Date \& Time | --- | --- | --- | --- | F8 | R |
| 027F | 300640 | 3 W | Last Trip Cause, Date \& Time | --- | --- | --- | --- | F8 | R |
| 0282 | 300643 | 2 W | Pre-Trip Phase A RMS Current | A | --- | --- | --- | F6 | R |
| 0284 | 300645 | 2 W | Pre-Trip Phase B RMS Current | A | --- | --- | --- | F6 | R |
| 0286 | 300647 | 2 W | Pre-Trip Phase C RMS Current | A | --- | --- | --- | F6 | R |
| 0288 | 300649 | 2 W | Pre-Trip Ground RMS Current | A | --- | --- | --- | F6 | R |
| 028A | 300651 | 2 W | Pre-Trip Negative Sequence Current | A | --- | --- | --- | F6 | R |
| 028C | 300653 | 2 W | Pre-Trip AB RMS Voltage | A | --- | --- | --- | F2 | R |
| 028E | 300655 | 2 W | Pre-Trip BC RMS Voltage | A | --- | --- | --- | F2 | R |
| 0290 | 300657 | 2 W | Pre-Trip CA RMS Voltage | A | --- | --- | --- | F2 | R |
| 0292 | 300659 | 1 W | Pre-Trip Frequency | Hz | --- | --- | --- | F6 | R |
| 0293 | 300660 | 1 W | Pre-Trip 30 Power Factor | --- | --- | --- | --- | F19 | R |


| Maintenance Data |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 02D0 | 300721 | 1 W | Trips Counter | --- | --- | --- | --- | F2 | R |
| 02D1 | 300722 | 1 W | Accumulated Amp on Phase A | KA | --- | --- | --- | F2 | R |
| 02D2 | 300723 | 1 W | Accumulated Amp on Phase B | KA | --- | --- | --- | F2 | R |
| 02D3 | 300724 | 1 W | Accumulated Amp on Phase C | KA | --- | --- | --- | F2 | R |
| 02D4 | 300725 | 1 W | Phase O/C Trips | --- | --- | --- | --- | F2 | R |
| 02D5 | 300726 | 1 W | Ground O/C Trips | --- | --- | --- | --- | F2 | R |
| 02D6 | 300727 | 1 W | Openning Counter | --- | --- | --- | --- | F2 | R |


| Events |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0600 | 301537 | 1 W | Last Event Number | --- | --- | --- | --- | F2 | R |
| 0601 | 301538 | 3 W | Last Event Clear Date \& Time | --- | --- | --- | --- | F8 | R |
| 0610 | 401553 | 1 W | Selected Event Number | --- | 1~65535 | 1 | 1 | F2 | R/W |
| 0611 | 301554 | 3 W | Selected Event Date \& Time | --- | --- | --- | --- | F8 | R |
| 0614 | 301557 | 2 W | Selected Event Phase A RMS Current | A | --- | --- | --- | F6 | R |
| 0616 | 301559 | 2 W | Selected Event Phase B RMS Current | A | --- | --- | --- | F6 | R |
| 0618 | 301561 | 2 W | Selected Event Phase C RMS Current | A | --- | --- | --- | F6 | R |
| 061A | 301563 | 2 W | Selected Event Ground RMS Current | A | --- | --- | --- | F6 | R |
| 061C | 301565 | 2 W | Selected Event Negative Sequence Current | A | --- | --- | --- | F6 | R |
| 061E | 301567 | 2 W | Selected Event AB RMS Voltage | A | --- | --- | --- | F2 | R |
| 0620 | 301569 | 2 W | Selected Event BC RMS Voltage | A | --- | --- | --- | F2 | R |
| 0622 | 301571 | 2 W | Selected Event CA RMS Voltage | A | --- | --- | --- | F2 | R |
| 0624 | 301573 | 1 W | Selected Event Frequency | Hz | --- | --- | --- | F6 | R |
| 0625 | 301574 | 1 W | Selected Event 3Ø Power Factor | --- | --- | --- | --- | F19 | R |


| Protections Setpoints Group |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | 404097 | 1 W | Phase Timed OverCurrent Relays | --- | 0~15 | 1 | 1 | F15 | R/W |
| 1001 | 404098 | 1 W | Phase Timed OverCurrent Pickup | \%CT | 4~300 | 1 | 4 | F2 | R/W |
| 1002 | 404099 | 1 W | Phase Timed OverCurrent Curve | --- | 0~12 | 1 | 1 | F16 | R/W |
| 1003 | 404100 | 1 W | Phase Timed OverCurrent Curve Multiplier | --- | 0.1~20.0 | 0.1 | 1.0 | F4 | R/W |
| 1004 | 404101 | 1 W | Phase Timed OverCurrent Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.0 | F6 | R/W |
| 1005 | 404102 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1006 | 404103 | 1 W | Phase Inst. OverCurrent Relays | --- | 0~15 | 1 | 1 | F15 | R/W |
| 1007 | 404104 | 1 W | Phase Inst. OverCurrent Pickup | \%CT | 4~1800 | 1/10 | 40 | F2 | R/W |

SMPR-1 Relay - Software Versions (1.02)

| SMPR-1 - MODBUS MEMORY MAP |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Add (Hex) | MODBUS REG. ADD (Dec) | Size | Description | Unit | Range | Step | Initial Value | Format | $\begin{aligned} & \text { Read/ } \\ & \text { Write } \end{aligned}$ |
| 1008 | 404105 | 1 W | Phase Inst. OverCurrent Delay | ms | 0~2000 | 10 | 0 | F2 | R/W |
| 1009 | 404106 | 1 W | Reserved |  |  |  |  |  | R/W |
| 100A | 404107 | 1 W | Neg. Sequence Timed OverCurrent Relays | --- | 0~15 | 1 | 1 | F15 | R/W |
| 100B | 404108 | 1 W | Neg. Sequence Timed OverCurrent Pickup | \%CT | 4~300 | 1 | 4 | F2 | R/W |
| 100 C | 404109 | 1 W | Neg. Sequence Timed OverCurrent Curve | --- | 0~12 | 1 | 1 | F16 | R/W |
| 100D | 404110 | 1 W | Neg. Sequence Timed OverCurrent Curve Multiplier | --- | $0.1 \sim 20.0$ | 0.1 | 1.0 | F4 | R/W |
| 100 E | 404111 | 1 W | Neg. Sequence Timed OverCurrent Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.0 | F6 | R/W |
| 100 F | 404112 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1010 | 404113 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1011 | 404114 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1012 | 404115 | 1 W | Phase OverCurrent Alarm Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 1013 | 404116 | 1 W | Phase OverCurrent Alarm Pickup | \%CT | 4~300 | 1 | 4 | F2 | R/W |
| 1014 | 404117 | 1 W | Phase OverCurrent Alarm Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.0 | F6 | R/W |
| 1015 | 404118 | 1 W | Amp Unbalance Relays | --- | 0~15 | 1 |  | F15 | R/W |
| 1016 | 404119 | 1 W | Amp Unbalance Pickup | \% | 1~99 | 1 | 10 | F2 | R/W |
| 1017 | 404120 | 1 W | Amp Unbalance Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.00 | F6 | R/W |
| 1018 | 404121 | 1 W | Phase UnderCurrent Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 1019 | 404122 | 1 W | Phase UnderCurrent Pickup | \%CT | 2~100 | 1 | 4 | F2 | R/W |
| 101A | 404123 | 1 W | Phase UnderCurrent Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.0 | F6 | R/W |
| 101B | 404124 | 1 W | Reserved |  |  |  |  |  | R/W |
| 101C | 404125 | 1 W | Reserved |  |  |  |  |  | R/W |
| 101D | 404126 | 1 W | Reserved |  |  |  |  |  | R/W |
| 101E | 404127 | 1 W | Reserved |  |  |  |  |  | R/W |
| 101F | 404128 | 1 W | Ground Timed OverCurrent Relays | --- | 0~15 | 1 |  | F15 | R/W |
| 1020 | 404129 | 1 W | Ground Timed OverCurrent Pickup | \%CT | 4~300 | 1 | 12 | F2 | R/W |
| 1021 | 404130 | 1 W | Ground Timed OverCurrent Curve | --- | 0~12 | 1 | 1 | F16 | R/W |
| 1022 | 404131 | 1 W | Ground Timed OverCurrent Curve Multiplier | --- | $0.1 \sim 20.0$ | 0.1 | 1.0 | F4 | R/W |
| 1023 | 404132 | 1 W | Ground Timed OverCurrent Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.0 | F6 | R/W |
| 1024 | 404133 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1025 | 404134 | 1 W | Ground Inst. OverCurrent Relays | --- | 0~15 | , | 1 | F15 | R/W |
| 1026 | 404135 | 1 W | Ground Inst. OverCurrent Pickup | \%CT | 4~1800 | 1/10 | 120 | F2 | R/W |
| 1027 | 404136 | 1 W | Ground Inst. OverCurrent Delay | ms | 0~2000 | 10 | 0 | F2 | R/W |
| 1028 | 404137 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1029 | 404138 | 1 W | Ground OverCurrent Alarm Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 102A | 404139 | 1 W | Ground OverCurrent Alarm Pickup | \%CT | 4~300 | 1 | 12 | F2 | R/W |
| 102B | 404140 | 1 W | Ground OverCurrent Alarm Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.0 | F6 | R/W |
| 102 C | 404141 | 1 W | Reserved |  |  |  |  |  | R/W |
| 102D | 404142 | 1 W | Reserved |  |  |  |  |  | R/W |
| 102 E | 404143 | 1 W | Reserved |  |  |  |  |  | R/W |
| 102F | 404144 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1030 | 404145 | 1 W | Undervoltage 1 Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 1031 | 404146 | 1 W | Undervoltage 1 Pickup | \%VT | 15~100 | 1 | 95 | F2 | R/W |
| 1032 | 404147 | 1 W | Undervoltage 1 Dropout | \%VT | 15~100 | 1 | 97 | F2 | R/W |
| 1033 | 404148 | 1 W | Undervoltage 1 Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.00 | F6 | R/W |
| 1034 | 404149 | 1 W | Undervoltage 1 Curve | --- | 0~1 |  | 0 | F29 | R/W |
| 1035 | 404150 | 1 W | Phases for U/V 1 Operation | --- | 0~2 | 1 | 0 | F30 | R/W |
| 1036 | 404151 | 1 W | Minimun Operation Level for U/V 1 | \%VT | $0 \sim 100$ | 1 | 0 | F2 | R/W |
| 1037 | 404152 | 1 W | Overvoltage 1 Relays | $\cdots$ | 0~15 | 1 | 0 | F15 | R/W |
| 1038 | 404153 | 1 w | Overvoltage 1 Pickup | \%VT | 1~150 | 1 | 105 | F2 | R/W |
| 1039 | 404154 | 1 W | Overvoltage 1 Dropout | \%VT | 1~150 | 1 | 103 | F2 | R/W |
| 103A | 404155 | 1 W | Overvoltage 1 Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.00 | F6 | R/W |
| 103B | 404156 | 1 W | Phases for O/V 1 Operation | --- | $0 \sim 2$ | 1 | 0 | F30 | R/W |
| 103 C | 404157 | 1 W | Reserved |  |  |  |  |  | R/W |
| 103D | 404158 | 1 W | Reserved |  |  |  |  |  | R/W |
| 103 E | 404159 | 1 W | Reserved |  |  |  |  |  | R/W |
| 103F | 404160 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1040 | 404161 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1041 | 404162 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1042 | 404163 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1043 | 404164 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1044 | 404165 | 1 W | Reserved |  |  |  |  |  | R/W |
| 1045 | 404166 | 1 W | Phase Reversal Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 1046 | 404167 | 1 W | Phase Reversal Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.00 | F6 | R/W |
| 1047 | 404168 | 1 W | Frequency 1 Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 1048 | 404169 | 1 W | Frequency 1 Mode | --- | 0~2 | 1 | 0 | F31 | R/W |
| 1049 | 404170 | 1 W | Frequency 1 Pickup | Hz | $0.05 \sim 9.99$ | 0.01 | 1.00 | F6 | R/W |
| 104A | 404171 | 1 W | Frequency 1 Dropout | Hz | $0.01 \sim 5.00$ | 0.01 | 0.50 | F6 | R/W |
| 104B | 404172 | 1 W | Frequency 1 Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.00 | F6 | R/W |
| 104 C | 404173 | 1 W | Frequency 2 Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 104D | 404174 | 1 W | Frequency 2 Mode | --- | 0~2 | 1 | 0 | F31 | R/W |
| 104E | 404175 | 1 W | Frequency 2 Pickup | Hz | 0.05~9.99 | 0.01 | 1.00 | F6 | R/W |
| 104F | 404176 | 1 W | Frequency 2 Dropout | Hz | 0.01~5.00 | 0.01 | 0.50 | F6 | R/W |
| 1050 | 404177 | 1 W | Frequency 2 Delay | Sec | 0.05~600 | 0.01/0.1/1 | 1.00 | F6 | R/W |
| 1051 | 404178 | 1 W | Power Factor Leading Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 1052 | 404179 | 1 W | Power Factor Leading Pickup | --- | (-0.99) $\sim(+1.00)$ | 0.01 | -0.80 | F5 | R/W |
| 1053 | 404180 | 1 W | Power Factor Leading Dropout | --- | $(-0.99) \sim(+1.00)$ | 0.01 | -0.80 | F5 | R/W |
| 1054 | 404181 | 1 W | Power Factor Leading Delay | Sec | $0.5 \sim 650.0$ | 0.5 | 1.0 | F6 | R/W |
| 1055 | 404182 | 1 W | Power Factor Lagging Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 1056 | 404183 | 1 W | Power Factor Lagging Pickup | --- | (-0.99)~(+1.00) | 0.01 | -0.80 | F5 | R/W |
| 1057 | 404184 | 1 W | Power Factor Lagging Dropout | --- | $(-0.99) \sim(+1.00)$ | 0.01 | -0.80 | F5 | R/W |
| 1058 | 404185 | 1 W | Power Factor Lagging Delay | Sec | $0.5 \sim 650.0$ | 0.5 | 1.0 | F6 | R/W |
| 1059 | 404186 | 1 W | Reverse Power Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 105A | 404187 | 1 W | Reverse Power Pickup | MW | $0.01 \sim 650.00$ | 0.01/0.1/1 | 0.10 | F6 | R/W |
| 105B | 404188 | 1 W | Reverse Power Delay | Sec | $0.5 \sim 650.0$ | 0.5 | 1.0 | F6 | R/W |
| 105C | 404189 | 1 W | Forward Power Relays | --- | 0~15 | 1 | - | F15 | R/W |
| 105D | 404190 | 1 W | Forward Power Pickup | MW | $0.01 \sim 650.00$ | 0.01/0.1/1 | 0.10 | F6 | R/W |
| 105E | 404191 | 1 W | Forward Power Delay | Sec | $0.5 \sim 650.0$ | 0.5 | 1.0 | F6 | R/W |
| 105F | 404192 | 1 W | Amp Demand Protection Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 1060 | 404193 | 1 W | Amp Demand Protection Level | A | 5~5000 |  | 100 | F2 | R/W |
| 1061 | 404194 | 1 W | KW Demand Protection Relays | --- | 0~15 | 1 | 0 | F15 | R/W |
| 1062 | 404195 | 1 W | KW Demand Protection Level | MW | $0.01 \sim 650.00$ | 0.01/0.1/1 | 0.10 | F6 | R/W |
| 1063 | 404196 | 1 W | KVAR Demand Protection Relays | --- | 0~15 | I | 0 | F15 | R/W |
| 1064 | 404197 | 1 W | KVAR Demand Protection Level | MVAR | $0.01 \sim 650.00$ | 0.01/0.1/1 | 0.10 | F6 | R/W |



| F12 | 16 Bits BitMap |  | Digital Input Configuration Register Format |
| :---: | :---: | :---: | :---: |
|  |  | Bit 0 | INPUT 1 SET ON: <br> 0 = "CONTACT CLOSED", 1 = "CONTACT OPEN" |
|  |  | Bit 1 | INPUT 2 SET ON: <br> 0 = "CONTACT CLOSED", 1 = "CONTACT OPEN" |
|  |  | Bit 2 | INPUT 3 SET ON: $0=\text { "CONTACT CLOSED", } 1 \text { = "CONTACT OPEN" }$ |
|  |  | Bit 3 ~ Bit 15 | Not Used |
| F13 | Integer |  | Digital Input Functions |
|  |  | 0 | NONE |
|  |  | 1 | BREAKER EARTHED |
|  |  | 2 | EXTERNAL RESET |
|  |  | 3 | REMOTE TRIP |
|  |  | 4 | BLOCK TRIP |
|  |  | 5 | AUX1 |
|  |  | 6 | AUX2 |
|  |  | 7 | AUX3 |
|  |  | 8 | LOCKOUT (86) |
|  |  | 9 | SET NEW DEMAND PERIOD |
| F14 | 16 Bits BitMap |  | Events Recorder Configuration Register Format |
|  |  | Bit 0 | Ph. Protections Events \{ $0=$ Off , $1=$ On \} |
|  |  | Bit 1 | Gnd. Protections Events $\{0=$ Off , $1=$ On \} |
|  |  | Bit 2 | Volatge Protections Events $\{0=\mathrm{Off}, 1=\mathrm{On}$ \} |
|  |  | Bit 3 | Frequency Protections Events $\{0=$ Off , 1 = On \} |
|  |  | Bit 4 | Power Protections Events \{ $0=$ Off , 1 = On \} |
|  |  | Bit 5 | System Alarms Events $\{0=$ Off , 1 = On \} |
|  |  | Bit 6 | Output Relays Events $\{0=$ Off , $1=$ On $\}$ |
|  |  | Bit 7 | Digital Inputs Events \{ $0=$ Off , $1=$ On $\}$ |
|  |  | Bit 8 ~ Bit 15 | Not Used |
| F15 | Integer |  | Output Relay Selection |
|  |  | Bit 0 | TRIP OUTPUT RELAY |
|  |  | Bit 1 | AUX. 1 OUTPUT RELAY |
|  |  | Bit 2 | AUX. 2 OUTPUT RELAY |
|  |  | Bit 3 | AUX. 3 OUTPUT RELAY |
| F16 | Integer |  | Protection Curve Definition Format |
|  |  | 0 | DefiniteTime |
|  |  | 1 | ANSI Moderate Inverse |
|  |  | 2 | ANSI Normal Inverse |
|  |  | 3 | ANSI Very Inverse |
|  |  | 4 | ANSI Extrem Inverse |
|  |  | 5 | IAC Moderate Inverse |
|  |  | 6 | IAC Normal Inverse |
|  |  | 7 | IAC Very Inverse |
|  |  | 8 | IAC Extrem rlnverse |
|  |  | 9 | IEC ShortTime |
|  |  | 10 | IEC A Normal Inverse |
|  |  | 11 | IEC B Very Inverse |
|  |  | 12 | IEC C Extrem Inverse |
| F17 | Integer |  | BaudRate Definitions |
|  |  | 0 | 1200 Bps |
|  |  | 1 | 2400 Bps |
|  |  | 2 | 4800 Bps |
|  |  | 3 | 9600 Bps |
|  |  | 4 | 19200 Bps |
| F18 | 16 Bits BitMap |  | Led Status Register Format |
|  |  | Bit 0 | TRIP LED: $0=\text { "OFF", } 1 \text { = "ON" }$ |
|  |  | Bit 1 | AUX. 1 LED: $0=\text { "OFF", } 1 \text { = "ON" }$ |
|  |  | Bit 2 | AUX. 2 LED: $0=\text { "OFF", } 1 \text { = "ON" }$ |
|  |  | Bit 3 | AUX. 3 LED: $0=\text { "OFF", } 1 \text { = "ON" }$ |
|  |  | Bit 4 | OUT OF SERVICE LED: $0 \text { = "OFF", } 1 \text { = "ON" }$ |
|  |  | Bit 5 | Not Used |
|  |  | Bit 6 | BREAKER OPEN LED: $0 \text { = "OFF", } 1 \text { = "ON" }$ |
|  |  | Bit 7 | BREAKER CLOSED LED: $0=\text { "OFF", } 1 \text { = "ON" }$ |
|  |  | Bit 8 | BREAKER EARTHED LED: $0=\text { "OFF", } 1 \text { = "ON" }$ |
|  |  | Bit 9 | AUTO-RECLOSE ENABLED LED: $0=\text { "OFF", } 1 \text { = "ON" }$ |


|  |  | Bit 10 | AUTO-RECLOSE IN PROGRESS LED: $0 \text { = "OFF", } 1 \text { = "ON" }$ |
| :---: | :---: | :---: | :---: |
|  |  | Bit 10 | LOCKOUT LED: $0=\text { "OFF", } 1 \text { = "ON" }$ |
|  |  | Bit 12 ~ Bit 15 | Not Used |
| F19 | Integer |  | Power Factor Format |
|  |  |  |  |
|  |  |  |  |
| F20 | 16 Bits BitMap |  | Output Relays Status Register |
|  |  | Bit 0 | Trip Output Relay \{ 0 = "Energized" , 1 = "De-energized" $\}$ |
|  |  | Bit 1 | Aux1 Output Relay \{ $0=$ "Energized" , $1=$ "De-energized" $\}$ |
|  |  | Bit 2 | Aux2 Output Relay \{ $0=$ "Energized" , $1=$ "De-energized" $\}$ |
|  |  | Bit 3 | Aux3 Output Relay \{ 0 = "Energized" , 1 = "De-energized" $\}$ |
|  |  | Bit 4 ~ Bit 15 | Not Used |
| F21 | 16 Bits BitMap |  | Digital Input Status Register |
|  |  | Bit 0 | Digital Input 1 \{ $0=$ "OPEN" , 1 = "CLOSE" $\}$ |
|  |  | Bit 1 | Digital Input 2 \{ $0=$ "OPEN" , 1 = "CLOSE" $\}$ |
|  |  | Bit 2 | Digital Input 3 \{ $0=$ "OPEN" , 1 = "CLOSE" $\}$ |
|  |  | Bit 3 | Breaker Status Digital Input \{ 0 = "OPEN" , 1 = "CLOSE" \} |
|  |  | Bit 4 ~ Bit 15 | Not Used |
| F22 | 16 Bits BitMap |  | Status \& Pickup Flags Format |
|  |  | Bit 0 | Phase Timed OverCurrent Protection \{ $0=$ OFF , $1=$ ON \} |
|  |  | Bit 1 | Phase Inst OverCurrent Protection $\{0=$ OFF, $1=$ ON \} |
|  |  | Bit 2 | Phase OverCurrent Alarm Protection $\{0=$ OFF , $1=$ ON \} |
|  |  | Bit 3 | Ground Timed OverCurrent Protection $\{0=$ OFF , $1=$ ON \} |
|  |  | Bit 4 | Ground Inst OverCurrent Protection $\{0=$ OFF, $1=$ ON \} |
|  |  | Bit 5 | Ground OverCurrent Alarm Protection \{ $0=$ OFF, $1=$ ON \} |
|  |  | Bit 6 | Not Used |
|  |  | Bit 7 | Not Used |
|  |  | Bit 8 | Not Used |
|  |  | Bit 9 | Not Used |
|  |  | Bit 10 | Not Used |
|  |  | Bit 11 | Not Used |
|  |  | Bit 12 | Disconnector Block $\{0=$ OFF , $1=$ ON \} |
|  |  | Bit 13 | Breaker Driscrepancy Function $\{0=$ OFF , 1 = ON \} |
|  |  | Bit 14 | Mechanical Operations Function $\{0=$ OFF, $1=$ ON \} |
|  |  | Bit 15 | Accumulated Amp Function $\{0=$ OFF , 1 = ON $\}$ |
|  |  |  |  |
| F23 | Integer |  | Commands Operation Codes |
|  |  | 0 | No Command |
|  |  | 1 | Remote Reset |
|  |  | 2 | Remote Trip |
|  |  |  |  |
|  |  | 5 | Activate Date \& Time Preset Data |
|  |  |  |  |
|  |  | 8 | Clear Maintenance Data |
|  |  | 9 | Clear All Events |
|  |  |  |  |
|  |  | 20 | Set Aux1 |
|  |  | 21 | Set Aux2 |
|  |  | 22 | Set Aux3 |
|  |  |  |  |
| F24 | Integer |  | Product Language |
|  |  | 0 | Not Used |
|  |  | 1 | English |
|  |  | 2 | Russian |
|  |  |  |  |
| F25 | 16 Bits BitMap |  | Status \& Pickup Flags Format 1 |
|  |  | Bit 0 | Phase Timed OverCurrent Protection $\{0=$ OFF, $1=$ ON \} |
|  |  | Bit 1 | Phase Inst OverCurrent Protection $\{0=$ OFF , 1 = ON \} |
|  |  | Bit 2 | Negative Sequence Timed OverCurrent Protection $\{0=$ OFF, $1=0 \mathrm{C}$ \} |
|  |  | Bit 3 | Phase OverCurrent Alarm Protection $\{0=$ OFF , $1=\mathrm{ON}$ \} |
|  |  | Bit 4 | Amp. Unbalance Protection $\{0=$ OFF , 1 = ON $\}$ |
|  |  | Bit 5 | Phase UnderCurrent Protection $\{0=$ OFF, $1=\mathrm{ON}$ \} |
|  |  | Bit 6 | Not Used |
|  |  | Bit 7 | Ground Timed OverCurrent Protection \{ $0=$ OFF , 1 = ON \} |
|  |  | Bit 8 | Ground Inst OverCurrent Protection \{ $0=$ OFF, $1=$ ON \} |
|  |  | Bit 9 | Ground OverCurrent Alarm Protection \{ $0=$ OFF, $1=$ ON \} |
|  |  | Bit 10 | Not Used |
|  |  | Bit 11 | Block Trip Out \{ $0=$ OFF , 1 = ON \} |
|  |  | Bit 12 | Lockout (86) \{ $0=$ OFF , 1 = ON \} |
|  |  | Bit 13 | Breaker Driscrepancy Function $\{0=$ OFF , 1 = ON \} |
|  |  | Bit 14 | Mechanical Operations Function \{ $0=$ OFF , 1 = ON \} |
|  |  | Bit 15 | Accumulated Amp Function $\{0=\mathrm{OFF}, 1=\mathrm{ON}$ \} |
|  |  |  |  |


| F26 | 16 Bits BitMap |  | Status \& Pickup Flags Format 2 |
| :---: | :---: | :---: | :---: |
|  |  | Bit 0 | UnderVoltage 1 Protection $\{0=$ OFF , $1=\mathrm{ON}$ \} |
|  |  | Bit 1 | OverVoltage 1 Protection $\{0=$ OFF , 1 = ON \} |
|  |  | Bit 2 | Not Used |
|  |  | Bit 3 | Not Used |
|  |  | Bit 4 | Phase Reversal Protection $\{0=$ OFF, $1=$ ON \} |
|  |  | Bit 5 | Frequency 1 Protection $\{0=$ OFF, $1=0 \mathrm{~N}$ \} |
|  |  | Bit 6 | Frequency 2 Protection $\{0=$ OFF, $1=\mathrm{ON}$ \} |
|  |  | Bit 7 | Not Used |
|  |  | Bit 8 | Not Used |
|  |  | Bit 9 | Power Factor Leading Protection \{ $0=$ OFF , 1 = ON \} |
|  |  | Bit 10 | Power Factor Lagging Protection \{ $0=$ OFF , $1=\mathrm{ON}$ \} |
|  |  | Bit 11 | Reverse Power Protection $\{0=$ OFF , $1=$ ON \} |
|  |  | Bit 12 | Forward Power Protection $\{0=$ OFF , $1=$ ON \} |
|  |  | Bit 13 | Amps Demand Protection $\{0=$ OFF, $1=\mathrm{ON}$ \} |
|  |  | Bit 14 | KW Demand Protection $\{0=$ OFF , $1=$ ON \} |
|  |  | Bit 15 | Kvar Demand Protection \{ 0 = OFF , 1 = ON \} |
|  |  |  |  |
| F27 | 16 Bits BitMap |  | Status \& Pickup Flags Format 3 |
|  |  | Bit 0 | Not Used |
|  |  | Bit 1 | Not Used |
|  |  | Bit 2 | Not Used |
|  |  | Bit 3 | Not Used |
|  |  | Bit 4 | Not Used |
|  |  | Bit 5 | Not Used |
|  |  | Bit 6 | Not Used |
|  |  | Bit 7 | Not Used |
|  |  | Bit 8 | Not Used |
|  |  | Bit 9 | Not Used |
|  |  | Bit 10 | Not Used |
|  |  | Bit 11 | Not Used |
|  |  | Bit 12 | Not Used |
|  |  | Bit 13 | Not Used |
|  |  | Bit 14 | Not Used |
|  |  | Bit 15 | Not Used |
|  |  |  |  |
| F28 | Integer |  | Not Used |
|  |  |  |  |
| F29 | Integer |  | Protection Curve Definition Format |
|  |  | 0 | DefiniteTime |
|  |  | 1 | Inverse |
|  |  |  |  |
| F30 | Integer |  | Phases for Protection Operation |
|  |  | 0 | Any One |
|  |  | 1 | Any Two |
|  |  | 2 | All Three |
|  |  |  |  |
| F31 | Integer |  | Frequency Protection Mode |
|  |  | 0 | O/F + U/F |
|  |  | 1 | O/F |
|  |  | 2 | U/F |
|  |  |  |  |
| F32 | Integer |  | Phase Sequence |
|  |  | 0 | None |
|  |  | 1 | A-B-C |
|  |  | 2 | A-C-B |


| SMPR-1 Event Cause List : |  |
| :---: | :---: |
| 0 | No Event |
| 1 | Events Clear |
|  |  |
| 4 | Trip Relay OFF |
| 5 | Trip Relay ON |
| 6 | Aux. 1 Relay OFF |
| 7 | Aux. 1 Relay ON |
| 8 | Aux. 2 Relay OFF |
| 9 | Aux. 2 Relay ON |
| 10 | Aux.3 Relay OFF |
| 11 | Aux. 3 Relay ON |
|  |  |
| 20 | Digital Input 1 Deactive |
| 21 | Digital Input 1 Active |
| 22 | Digital Input 2 Deactive |
| 23 | Digital Input 2 Active |
| 24 | Digital Input 3 Deactive |
| 25 | Digital Input 3 Active |
| 26 | Breaker Status "OPENED" |
| 27 | Breaker Status "CLOSED" |
|  |  |
| 32 | Earth Released |
| 33 | Breaker Earthed |
| 34 | Remote Trip |
| 35 | Serial Comunication Trip |
| 36 | Block Trip Reset |
| 37 | Block Trip Set |
|  |  |
| 40 | Breaker Discrepancy Alarm |
| 41 | Mechanical Operation Alarm |
| 42 | Accumulated Amp Alarm |
| 43 | Maintenance Data Clear |
|  |  |
| 50 | Phase Timed OverCurrent |
| 51 | Phase Inst OverCurrent |
| 52 | Phase OverCurrent Alarm |
| 53 | Amp. Unbalance |
| 54 | Phase UnderCurrent |
| 55 | Reserved |
| 56 | Negative Sequence Timed O/C |
|  |  |
| 60 | Ground Timed OverCurrent |
| 61 | Ground Inst OverCurrent |
| 62 | Ground OverCurrent Alarm |
|  |  |
| 70 | UnderVoltage 1 |
| 71 | OverVoltage 1 |
| 72 | Reserved |
| 73 | Reserved |
| 74 | Phase Reversal |
|  |  |
| 80 | Frequency 1 |
| 81 | Frequency 2 |
|  |  |
| 90 | Power Factor Leading |
| 91 | Power Factor Lagging |
| 92 | Reverse Power |
| 93 | Forward Power |
| 94 | Amps Demand |
| 95 | KW Demand |
| 96 | Kvar Demand |

